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Abstract

We study the phase transition from the persistence phase to the extinction phase for
the SIRS (susceptible/ infected/ refractory/ susceptible) model of diseases spreading on
random networks. By studying a temporal evolution and synchronization parameter of
this model on random networks, we find that, this model on random networks, shows a
synchronization phase in a narrow range of very small values of clustering coefficient. This
finding corroborates the conclusion reached in [Phys. Rev. Lett. 86, 2909 (2001)] that,
the clustering coefficient is responsible for the emergence of the synchronization phase
in the small world networks. With these results and the result that we had obtained
in [Physica A 535, 122251 (2019)], we give a reasonable justification the reason for the
occurrence of that behavior, at small values of the clustering coefficient.

Keywords: Phase transition, Diseases spreading, Random networks, Clustering coeffi-
cient.
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1 Introduction

Periodicity on occurring epidemics presents a long standing challenge for the formulation of
epidemic models. Whenever the reason of occurring that oscillation related to external driving
causes, such as the seasons or arise from the intrinsic dynamics is an open problem. In attempt-
ing to simulate those systems, the synchronization phase has been observed in some cases such
as: seasonal driving [1], stochastic dynamics [2, 3] and a complex network of contacts [4]. In

*E-mail:masali73@gmail.com

©Amran University Publishing

J. Amr. Uni.01  (2021) p.159

_____________________________________________________________________________

______________________________________________________________________________



J. Amr. Uni. 01 (2021) p.159 M. Ali Saif

case of simulating the spread of diseases using the SIRS model, a self sustained oscillation has
been observed in some cases at specific values of the parameters of those systems such as: the
SIRS model with distributed delays [5], SIRS on small world networks [4] and SIRS on Scale
free networks [6]. Explanation the reason of occurring that oscillation on those models still
form another challenge that needs to be revealed.
Kuperman and Abramson [4] have shown the SIRS model in the regular one dimensional lattice
evolves to a fluctuating endemic state of low infection. However, on a small world network and
at a finite value of the disorder of the network, they get a transition to self-sustained oscilla-
tions in the size of the infected subpopulation. They also found that, that transition specifically
occurs where the average clusterization shifts from high to low. This indicates that, the cause
of the synchronization phase is the clustering coefficient. Kuperman and Abramson argued
that, the clustering coefficient to be the responsible evidence for that behavior [4]. In Ref.
[7] we have proved that, for the SIRS model on the networks and when the recovery time τR
is larger than the infection time τI , the infection will flow directionally from the ancestors to
the descendants however, the descendants will be unable to re-infect their ancestors during the
time of their illness. That behavior leads him to deduce that, for the disease in order to spread
frequently throughout the nodes of the networks, the loops on the network are necessary, which
means that clustering coefficient will play an important role in this model. where clusters tend
to spread infection among close-knit neighborhoods. Hence, when the loops are high inside the
network, the reinfection occurs in the network at many places and at different times, which
looks like a kind of randomness. Whereas when the number of loops are low, reinfection occurs
at specific places and times on the network, which looks like as a kind of regularity in occurring
the second period of infection.
Inspired by those works, we are going in this work to study the SIRS model on random net-
works. Whereas, we can control the clustering coefficient on the random networks from very
small values, up to 1, we expect to observe the self sustained oscillation in the size of the
infected subpopulation of this model when the clustering coefficient is low, similarly as what
happen in the case of small world network [4].
Erdös-Rényi (ER) [8] random network is defined in the following way: one starts with N iso-
lated nodes, every pair of nodes being connected with probability p, leading to a Poisson degree
distribution P (k) = exp−〈k〉〈k〉k/kwith average degree

〈k〉 = (N − 1)p (1)

The total number of edges L is a random variable with the expectation value 〈L〉 = pN(N−1)
2

.
The clustering coefficient of a random graph is

Crand = p =
〈k〉
N

(2)

2 Epidemic model

SIRS epidemic model on the networks is defined as follows [4, 9]: if we consider a lattice of N
nodes, each node is connected to its k neighbors. The nodes can exist in one stage of three
states, susceptible (S), infected (I) and refractory (R). Susceptible node can pass to the infected
state through contagion by an infected one. The infected node passes to the refractory state
after an infection time τI . The refractory nodes return to the susceptible state after a recovery
time τR. The contagion is possible only during the S phase, and only by a I node. During
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the R phase, the nodes are immune and do not infect. The system evolves with discrete time
steps. Each node in the network is characterized by a time counter τi(t) = 0, 1, ..., τI + τR ≡ τ0
, describing its phase in the cycle of the disease. The epidemiological state πi of the node
(S, I, orR) depends on the phase in the following way:

πi(t) = S if τi = 0,

πi(t) = I if τi ∈ (1, τI),

πi(t) = R if τi ∈ (τI + 1, τ0) (3)

The state of a node in the next step depends on its current phase in the cycle. A susceptible node
stays as such, at τ = 0, until it becomes infected. Once infected, it goes (deterministically) over
a cycle that lasts τ0 time steps. During the first τI time steps, it is infected and can potentially
transmit the disease to a susceptible neighbor. During the last τR time steps of the cycle, it
remains in state R, immune and not contagious. After the cycle is complete, it returns to the
susceptible state.

3 Numerical Results

In this work, we consider a synchronous update of a system of N nodes on a random network, in
which any link connects two nodes that exist with probability p, hence each node is connected
on average to 〈k〉 neighbors. We assume that, at each time step an infected node infects each
of its neighbors with probability λ. Infected nodes remain as such for τI time steps, after which
they become immune for τR time steps. The probability T for the infected node i to infect one
of its neighbors during the time of its illness is: [10, 11, 12]:

T = [1− (1− λ)τI ] (4)

We have performed extensive numerical simulations of the described model on an ER ran-
dom network. For system of N = 104 with an initial fraction of ninf (0) = 0.1 infected nodes,
and the rest are susceptible, Fig. 1 shows part of a three time series displaying the fraction of
infected nodes ninf (t) in the system. The 200 time steps are shown representative of the sta-
tionary state of system. Fig. 1(right) shows three curves correspond to systems with different
values of connection probability p: p = 0.0004 (bottom), p = 0.0006 (middle) and p = 0.0008
(top). Whereas Fig. 1(left) shows three curves correspond to systems with different values of
connection probability p: p = 0.001 (bottom), p = 0.0014 (middle) and p = 0.0016 (top). All
the curves in Fig. 1 for the case when the infection time is τI = 7, recovery time is τR = 10 and
infection probability λ = 0.1. Fig.1 shows clearly a transition from a fluctuating endemic state
to an oscillatory one followed by a fluctuating endemic situation. At p = 0.0004 (this value of
p corresponds to average degree 〈k〉 = 4, Eq. 1) and p = 0.0006 (average degree 〈k〉 = 6) the
stationary state is a fixed point, with fluctuations. The self sustained oscillation appears clearly
at the values of p = 0.0008 (average degree 〈k〉 = 8) and p = 0.001 (average degree 〈k〉 = 10).
As the value of p increases the amplitude of oscillation starts decline as that is clear at the
value of p = 0.0014 (〈k〉 = 14). The system again reaches the fixed point with fluctuation when
p = 0.0016 (〈k〉 = 16).

It is evident from Fig. 1 that, in narrow range of the values of p specifically from p = 0.0008
(〈k〉 = 8), up to p = 0.0014 (〈k〉 = 14), ER random network has a large amplitude self-
sustained oscillation. The oscillation almost periodic with a very well defined period and small
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Figure 1: Density of infectious nodes as function of time for different values of p, as shown in the legend.
Other parameters are N = 104, τI = 7, τR = 10, λ = 0.1 and ninf (0) = 0.1.

fluctuations in amplitude similarly to the situation on a small world network [4]. The periodic
time of that oscillation approximately equals to 23 time steps, in which is slightly longer than
τ0 = τI + τR, since it includes the average time that a susceptible node remains at state S,
before being infected.
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Figure 2: Density of infectious nodes as function of time for different values of p, as shown in the legend.
Other parameters are N = 105, τI = 7, τR = 10, λ = 0.1 and ninf (0) = 0.1.

For the case when the system size is N = 105, we show in Fig. 2, and for the same values of
the parameters in Fig. 1, three curves correspond to a system with different values of connection
probability p: p = 0.0001 (bottom), p = 0.00014 (middle) and p = 0.00019 (top). We have
averaged over 5 configurations. It is clear here that, the oscillation becomes better and reaches
its highest value when p = 0.00014 (〈k〉 = 14). The oscillation we observed here also is in the
narrow range of values of p, precisely from p = 0.00008 (〈k〉 = 8), up to p = 0.00019 (〈k〉 = 19).
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The periodic oscillation in the density of infected nodes on the network indicates to a
spontaneous synchronization of a significant fraction of the nodes on that network. In order to
quantify that synchronization, we use the synchronization parameter [13], which is defined as

σ(t) =

∣∣∣∣∣ 1

N

N∑
j=1

expiφj(t)

∣∣∣∣∣ (5)

Where φj = 2π(τj − 1)/τ0 is a geometrical phase corresponding to τj. We do not include
the sum in the previous equation, the case when τ = 0 [4]. When the nodes on the network
are not synchronized; the phases are spread widely in the cycle and the complex numbers expiφ

are correspondingly spread in the unit circle. In this case σ is small. On the other hand, when
a significant part of the nodes are synchronized in the cycle, σ is large.

Fig.3 shows the average value of synchronization parameter 〈σ〉 of the system as a function
of connection probability p, for the case when the system size is N = 104 (left) and N = 105

(right). Each point on the figure corresponds to a time average of 1000 time steps after we
discard 2000 time steps, and a subsequent average over 20 configurations of the network when
N = 104 and 5 configurations of the network when N = 105. Other parameters are τI = 7,
τR = 10, λ = 0.1 and ninf (0) = 0.1.

It is clear that, synchronization phase in this case exists at very small values of clustering
coefficient of random networks. The point which we assert here is this, the synchronization
phase in this system appears approximately at 〈k〉 ≈ 8 (which is p ≈ 0.0008 when N = 104

and p ≈ 0.00008 when N = 105). This value of 〈k〉 is larger than the critical point pc ≈ 1/N =
〈k〉 = 1, where the giant component emerges on the random network. The value of 〈k〉 at which
synchronization phase starts appearing almost is the value of 〈k〉 at which the isolated node on
random network is absent and the random network becomes connected (〈k〉 > lnN(p > lnN

N
)).

Synchronization on the random network as Fig. 3 shows, disappears almost at 〈k〉 ≈ 17 when
N = 104 and at 〈k〉 ≈ 19 when N = 105.
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Figure 3: Average synchronization parameter 〈σ〉 of the system as a function of connection probability p, when
N = 104 (left) and N = 105 (right) for the case of λ = 0.1. Each point corresponds to a time average of 1000
time steps, and a subsequent average over 20 configurations of the network when N = 104 and 5 configurations
of the network when N = 105. Other parameters are τI = 7, τR = 10, and ninf (0) = 0.1.

The results obtained here confirm what we had previously speculated about the possibility of
synchronization at low values of clustering coefficient for this model on random networks. These
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results confirm that, the important role played by the clustering coefficient in the occurrence
of oscillation in this model on the networks. The obtained results here are also consistent with
the results obtained in Ref. [4] on the responsibility of that parameter in the appearance of the
synchronization state in such systems. In addition to that, we can confirm the importance of
this parameter in the occurrence of the synchronization state from Ref. [7], which emphasizes
the need for the loops in the networks for the disease to spread frequently throughout the nodes
of the networks. Whereas, clusters tend to spread infection among close-knit neighborhoods
[14]. We speculate that, whenever the value of the clustering coefficient is high the network
is highly clustered and the loops exist at many places on the network, hence the next period
of infection will happen at many places on the network and at any time, which will look like
as a kind of randomness (in space and time) in the occurring the next generation of infection.
However, when the clustering coefficient becomes lower, which means the number of triangular
loops on the network also will become lower, the reinfection will be localized where those loops
exist. Consequently, the next period of infection (on the average) will happen at a specific
place and time on the network. This will look like as a kind of regularity in the occurrence of
the second period of infection.

4 Conclusion

We have studied the spreading of infectious diseases for the SIRS model on the random networks.
Simulation results of this model on random network show a synchronization phase in narrow
range of the values of clustering coefficient, similarly to what has been observed in a small
world network [4]. This finding confirms what the authors conclude in Ref. [4] about the
responsibility of the clustering coefficient parameter in occurring the synchronization for this
model on networks.
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