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Abstract

We generalize the concept of measurement-induced non-locality (MIN) to an n-partite
quantum state. We get exact analytical expressions for MIN in an n-partite pure and n-
qubit mixed state. We obtain the conditions under which MiN equals geometric quantum
discord in an n-partite pure state and an n-qubit mixed state.
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1 Introduction

Quantum correlation, a fundamental aspect of quantum mechanics, significantly makes the de-
parture from the classical regime. It is a useful physical resource for various types of quantum
information processing, such as teleportation, super dense coding, communication and quan-
tum algorithms [1]. Recently, various measures have been proposed to capture quantumness
which go beyond entanglement such as measurement-induced disturbance (MID) [2], geomet-
ric discord (GD) [3, 4], measurement-induced nonlocality (MIN) [5] and uncertainty-induced
nonlocality (UIN)[6]. The measurement induced non-locality (MIN) is a measure of quantum
correlations as manifested in the non-local effects of local (on a single part) quantum operations
[7]. These local quantum operations leave invariant the reduced density operators of the parts
on which they act, while changing the global quantum state. MiN concerns the von-Neumann
measurement on a part of a quantum system. Non-locality (in all its forms) being an inher-
ently quantum phenomenon, is expected to be useful as a tool for quantitative specification
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of quantum correlation. Such a quantitative specification of quantum correlations in terms of
MIN was given in [7] for bipartite quantum systems. MIN has also been investigated based on
relative entropy [8], von Neumann entropy, skew information [9], trace distance [10, 11], fidelity
[12] and MIN based on affinity [13]. Here we generalize this measure to N -partite quantum
systems. The MIN is a manifestation of the quantum verses classical paradigm of quantum
correlations and naturally compares with quantum discord [14] which is also a manifestation of
such a paradigm. In fact, it is quite relevant to inquire about the conditions on quantum states
under which MIN and geometric discord are equal (or, rather are different) and the different
kinds of information they give about the quantum correlations in a quantum state. Here we
establish such general conditions in n-partite pure and n-qubit mixed states.

2 Multipartite Generalization of MiN

Multipartite generalization of the MIN can be obtained in a manner analogous to that of a
geometric quantum discord [14]. For an n-partite system in a stete ρ we define

Nl(ρ) =
dl

dl − 1
max
Π(l)
||ρ− Π(l)(ρ)||2), l = 1, 2, · · · , n (1)

where Π(l) = {Π(l)
k } stands for the set of von-Neumann measurements on the lth part such as

that Π(l)(ρ(l)) =
∑

k Π
(l)
k ρ

(l)Π
(l)
k = ρ(l), ρ(l) being the reduced density operator obtained by trac-

ing out all parts other than the lth part. Such a measurement Π(l) is defined by the projectors
corresponding to the eigenstates of ρ(l). When all the eigenvalues of ρ(l) are non-degenerate,
there is only one von-Neumann measurement Π(l) satisfying Π(l)(ρ(l)) =

∑
k Π

(l)
k ρ

(l)Π
(l)
k = ρ(l)

and the maximization requirement in Eq.(1) drops out. If one or more eigenvalues of ρ(l) are
degenerate, the right hand side of the Eq.(1) has to be maximized over the eigenspaces of de-
generate eigenvalues, which is, in general, a difficult task. Comparing the definitions of MIN
Nl(ρ) and the geometric discord Dl(ρ) it follows that, for any n-partite state, Nl(ρ) ≥ Dl(ρ).
We are interested in finding the criteria for their equality. The multipartite non-locality can be
evaluated for an n-partite pure state via the following
Theorem 1 : Let |ψ〉 =

∑
i1i2···in ai1i2···in|i1i2 · · · in〉 be a n-partite pure state. Then

Nl(|ψ〉〈ψ|) =
dl

dl − 1
(1− tr(ρ(l))2) (2)

where ρ(l) is the reduced density matrix of the lth part snd dl = dim(H(l)).
Proof : In order to get the Nl(|ψ〉〈ψ|) we can directly calculate the terms which define it
(Eq.(1)). We have

ρ = |ψ〉〈ψ| =
∑

i1i2···in

∑
j1j2···jn

ai1i2···ina
∗
ji1j2···jn|i1i2 · · · in〉〈j1j2 · · · jn|

The set o von-Neumann measurements on the lth part is given by

Π(l) = {Π(l)
k = U |kl〉〈kl|U †}

where the {|kl〉}, kl = 1, . . . , dl = dim(H(l)) is an orthonormal basis in H(l) and U is a unitary
operator acting on H(l). A direct calculation of tr(ρΠ(l)ρ) and comparison with ρ(l) = trl̄(ρ)
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gives, assuming that {U |kl〉} is the eigenbasis of ρ(l), tr(ρΠ(l)(ρ)) =
∑

kl
(〈kl|U †ρ(l)U |kl〉)2 =∑

kl
λ2
kl

= tr(ρ(l))2 where {λkl} are the eigenvalues of ρ(l). From the definition of Nl(ρ) (Eq.(1))
we get

Nl(ρ) =
dl

dl − 1
||ρ||2 −minΠ(l)(2tr(ρΠ(l)(ρ))− ||Π(l)(ρ)||2)

For a pure state ||ρ||2 = 1 and ||Π(l)(ρ)||2 = tr(ρΠ(l)(ρ)) so that

Nl(ρ) =
dl

dl − 1
(1− tr(ρΠ(l)(ρ)))

The minimum is over the von-Neumann measurements leaving the marginal state ρ(l) invariant,
that is

∑
k Π

(l)
k ρ

(l)Π
(l)
k = ρ(l), or,∑

kl

〈kl|U †ρ(l)U |kl〉U |kl〉〈kl|U † = ρ(l)

This is the spectral decomposition of the ρ(l) which is consistent with our choice of {U |kl〉 to
be the eigenbasis of ρ(l). Since the tr(ρΠ(l)(ρ)) is simply the trace of (ρ(l))2, the minimization
in the definition of the Nl Eq.(1) drops out and we get

Nl(|ψ〉〈ψ|) =
dl

dl − 1
(1− tr(ρ(l))2)

Corollary : For an n-partite pure state ρ = |ψ〉〈ψ|

Dl(ρ) = Nl(ρ)

where the Dl(ρ) is the geometric discord of the ρ with the von-Neomann measurment on the
lth part. This important result follows trivially, because the Dl(ρ) requires maximization over
all von-Neumann measurements on the lth part which is obtained if the {U |kl〉} forms the
eignbasis of ρ(l).
It is interesting to compare theNl(ρ) (Eq.(1) with measures of entanglement of pure multipartite
states. For a bipartite pure state ρAB we have, for the concurrence,

C(ρAB) =
√

2(1− tr(ρ2
A)

which is related to the Nl(ρ)AB by the

Nl(ρ)AB =
dl

2(dl − 1)
C2(ρAB).

Thus, for pure bipartite states, non-locality is simply related to concurrence.
The Meyer-Wallach measure of entanglement of multipartite pure states is

Q(|ψ〉) =
1

n

n∑
k=1

2(1− tr(ρ2
k))

where ρk is the reduced density operator for the kth part. Thus,

Q(|ψ〉) =
2

n

n∑
l=1

(
dl − 1

dl

)
Nl(|ψ〉〈ψ|).

Thus the Meyer-Wallach measure of a pure state multipartite entanglement is the average of a
non-locality over the parts of the system.

169



J. Amr. Uni. 01 (2021) p.167 Ali S M Hassan et al

3 Non-locality in the Multipartite Mixed States

To get an Nl(ρ) in this case, we start with the Bloch representation of a multipartite state
ρ[15]. Bloch representation [15] of an n-partite density matrix is

ρ =
1

ΠN
k dk
{⊗Nk Idk+

∑
k∈N

∑
αk

sαk
λ(k)
αk

+
∑

2≤M≤N

∑
{k1,k2,··· ,kM}

∑
αk1

αk2
···αkM

t̃αk1
αk2
···αkM

λ(k1)
αk1

λ(k2)
αk2
· · ·λ(kM )

αkM
}.

(3)
Where

λ(k1)
αk1

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk1
⊗ Idk1+1

⊗ · · · ⊗ IdN )

λ(k2)
αk2

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk2
⊗ Idk2+1

⊗ · · · ⊗ IdN )

λ(k1)
αk1

λ(k2)
αk2

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk1
⊗ Idk1+1

⊗ · · · ⊗ λαk2
⊗ Idk2+1

⊗ IdN ) (4)

s(k) is a Bloch vector corresponding to kth subsystem, s(k) = [sαk
]
d2k−1
αk=1 and

t̃αk1
αk2

...αkM
=
dk1dk2 . . . dkM

2M
Tr[ρλ(k1)

αk1
λ(k2)
αk2
· · ·λ(kM )

αkM
] (5)

For more details see ref.[15, 16, 17]. We need to define a product of a tensor with a matrix,
the n-mode product [18, 19]. The n-mode (matrix ) product of a tensor Y (of order n and with
dimension J1× J2× · · · JN) with a matrix A with dimension I × Jn is denoted by Y ×nA. The
result is a tensor of size J1 × J2 × · · · Jn−1 × I × Jn+1 × · · · JN and is defined elementwise by

(Y ×n A)j1j2···jn−1ijn+1···jN =
Jn∑
jn=1

yj1j2···jNaijn . (6)

Recently, for a bipartite system ab (N = 2) with states in Ha⊗Hb, dim(Ha) = da, dim(Hb) =
db, S. Luo and S. Fu introduced the Measurement-Induced Nonlocality [7]

Na(ρ) = tr(TT t)−min
A
tr(ATT tAt), (7)

where T = [tij] is an d2
a×d2

b matrix and the minimum is taken over all the da×d2
a−1-dimensional

isometric matrices A = [aji] such that aji = tr(|j〉〈j|Xi) = 〈j|Xi|j〉, j = 1, 2, . . . , da ; i =
1, 2, . . . , d2

a − 1 and {|j〉} is any orthonormal basis in the Ha. we generalize this result to an
n-partite quantum states.
Theorem 2. Let the ρ12···N be an n-partite state defined by Eq.(4), then

Nl(ρ) = Cl{
∑

1≤M≤N−1

∑
{k1,k2,··· ,kM}⊆N−{l}

dldk1dk2 · · · dkM
2M+1

||T {l,k1,k2,··· ,kM}||2−min
A(l)

tr(A(l)K(l)(A(l))t)},

(8)
where Cl = dl

(dl−1)ΠN
k dk

, K(l) define as

K
(l)
αlβl

=
∑

1≤M≤N−1

∑
{k1,k2,··· ,kM}⊆N−{l}

∑
αk1

αk2
···αkM

dldk1dk2 · · · dkM
2M+1

tαlαk1
αk2
···αkM

tβlαk1
αk2
···αkM

,
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and T = [ti1i2···iM ] = [Tr(ρλ
(k1)
αk1

λ
(k2)
αk2
· · ·λ(kM )

αkM
)], the maximum is taken over all dl × (d2

l −

1)-dimensional matrices A(l) = [ajil ], such that ajil = tr(|j〉〈j|
λ
(l)
il√
2

), j = 1, 2, . . . , dl; il =

1, 2, . . . , d2
l − 1 and {|j〉} is any orthonormal basis for H(l). In particular, we have

Nl(ρ) ≤
d2l−dl∑
i=1

ηi, (9)

where the {ηi : i = 1, 2, · · · , d2
l − 1} are the eigenvalues of the (d2

l − 1) × (d2
l − 1)- symmetric

matrix K(l) listed in a decreasing order. Furthermore, if the ρ(l) = trl̄ ρ12···N (where trl̄ is taken
trace over all parts except lth part) is non-degenerate with spectral projections {|j〉〈j|}, then

Nl(ρ) = Cl{
∑

1≤M≤N−1

∑
{k1,k2,··· ,kM}⊆N−{l}

dldk1dk2 · · · dkM
2M+1

||T {l,k1,k2,··· ,kM}||2 − tr(A(l)K(l)(A(l))t)},

(10)
Theorem 3. If the lth part is a qubit (dl = 2), then

Nl(ρ) = Cl

 ∑
1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

dk1dk2 · · · dkM
2M

||T {l,k1,...,kM}||2 −

{
s(l)

t
K(l)s(l)

||s(l)||2 , if s(l) 6= 0

ηmin, if s(l) = 0

 ,
(11a)

where the s(l) is the coherent vector of ρ(l) and ηmin is the smallest eigenvalue of the matrix
K(l) which is an 3× 3 real symmetric matrix, defined as

K(l) =
∑

1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

∑
αk1

αk2
···αkM

dk1dk2 · · · dkM
2M

tαlαk1
αk2
···αkM

tβlαk1
αk2
···αkM

, (11)

For n-qubit (di = 2, i = 1, 2, · · · , n), then

Nl(ρ) =
1

2(N−1)

 ∑
1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

||T {l,k1,...,kM}||2 −

{
s(l)

t
K(l)s(l)

||s(l)||2 , if s(l) 6= 0

ηmin, if s(l) = 0

 (12a)

K(l) =
∑

1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

∑
αk1

αk2
···αkM

tαlαk1
αk2
···αkM

tβlαk1
αk2
···αkM

, (12)

The proof of the theorems (2) and (3) is a straight forward generalization of that of theorems
(2) and (3) respectively in Ref. [7] to the multipartite case, so that we skip it.

4 The Relation Between the Non-Locality and the Geo-

metric Quantum Discord for Arbitrary n-qubit States

We saw (see(Eq.(2))) that the non-locality and geometric discord are equal for the arbitrary n-
partite pure states. In this section we find a class of the n-qubit states for which these quantities
coincide. Consider an n-qubit state ρ. The geometric discord for such a state corresponding to
the von-Neumann measurement on lth qubit is given by

Dl(ρ) =
1

2(N−1)

||s(l)||2 +
∑

1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

||T {l,k1,...,kM}||2 − λmax

 , (13)
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where s(l) is the coherent vector and ρ(l) (reduced density operator of the lth part), T =

[tαk1
αk2

...αkM
] = [Tr(ρλ

(k1)
αk1

λ
(k2)
αk2
· · ·λ(kM )

αkM
)], and λmax is the largest eigenvalue of the 3 × 3 real

symmetric matrix
G(l) = s(l)(s(l))t +K(l) (14)

where K(l) is given by Eq.(12) for the n-qubits. The non-locality for the n-qubit state ρ is given
by Eq.(11a). We now consider two cases.
Case I: s(l) 6= 0. By Eq.(14) we get the êtG(l)ê = êts(l)s(l)ê+ êtK(l)ê where ê ∈ R3 is an arbitrary

unit vector, choosing ê = s(l)

||s(l)|| , we get

(s(l))tK(l)s(l)

||s(l)||2
=

(s(l))tG(l)s(l)

||s(l)||2
− ||s(l)||2

Substituting in Eq.(11) we get

Nl(ρ) =
1

2(N−1)

||s(l)||2 +
∑

1≤M≤N−1

∑
{k1,...,kM}⊆N−{l}

||T {l,k1,...,kM}||2 − s(l)tG(l)s(l)

||s(l)||2

 (15)

If the s(l)

||s(l)|| , is the eigenvector of the G(l) with the largest eigenvalue then the right hand side of

the Eq.(15) gives the geometric discord Dl(ρ) so that under this condition Nl(ρ) = Dl(ρ). The
above condition can be equivalently stated as [s(l)(s(l))t, K(l)] = 0 and ||s(l)||2 + ηl ≥ ηi 6=l where
{ηi} are the eigenvalues of K(l) and the ηl is the eigenvalue corresponding to the eigenvector
s(l)

||s(l)|| .

Case II: s(l) = 0. In this case the ρ has one doubly degenerate eigenvalue. With s(l) = 0 we get

êtG(l)ê = êtK(l)ê. (16)

To get a non-locality we have to minimize the right hand side while the geometric discord
requires maximization of the left hand side. Under these conditions, the equality in Eq.(16)
is preserved if the G(l) = K(l) has a single three-fold degenerate eigenvalue,(η1 = η2 = η3).
Thus when s(l) = 0, Nl(ρ) = Dl(ρ) provided the matrix K(l) has a single three fold degenerate
eigenvalue.

As a first example we consider the set of three qubit states comprising the convex combi-
nation of the |GHZ〉 = 1√

2
(|000〉+ |111〉) and |w〉 = 1√

3
(|001〉+ |010〉+ |100〉),

ρ(p) = p|GHZ〉〈GHZ|+ (1− p)|w〉〈w|
the K(1) matrix of this state is

K(1) =

 2p2 + 16
9

(1− p)2 0 0
0 2p2 + 16

9
(1− p)2 0

0 0 2p2 + 19
9

(1− p)2 − 4
3
p(1− p)

 ,
with the coherent vector for the first qubit s(1) = [0 0 1

3
(1 − p)]t 6= 0. So that case I applies.

The [s(1)(s(1))t, K(1)] = 0, and the condition ||s(1)||2 + η1 ≥ ηi 6=1, η1 is the eigenvalue of K(1)

matrix corresponding to eigenvector s(1)

||s(1)|| , is satisfied when p ≤ 1
4

and p = 1. This is depicted

in Fig.(1a). The second example consists of the

ρ(p) = p|w̃〉〈w̃|+ (1− p)|w〉〈w|
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Figure 1: MIN (dashed line) and GQD (solid line) for different Mixed states of three qubits

where |w̃〉 is the flipped |w〉 state, σx ⊗ σx ⊗ σx|w〉. The K(1) matrix of this state is

K(1) =

 16
9
p2 + 16

9
(1− p)2 0 0

0 16
9
p2 + 16

9
(1− p)2 0

0 0 19
9
p2 + 19

9
(1− p)2 − 10

3
p(1− p)

 ,
with the coherent vector for the first qubit s(1) = [0 0 1

3
(1−2p)]t 6= 0. So that case I applies. The

[s(1)(s(1))t, K(1)] = 0 and the condition ||s(1)||2 + η1 ≥ ηi 6=1, η1 is satisfied when the p ≤ 0.1127
and p ≥ 0.8873. The results are shown in Fig.(1b). The third example consists of

ρ(p) = p|GHZ〉〈GHZ|+ (1− p)|GHZ−〉〈GHZ−|

where the |GHZ−〉 = 1√
2
(|000〉 − |111〉). The K(1) matrix of this state is

K(1) =

 2(2p2 − 1)2 0 0
0 2(2p2 − 1)2 0
0 0 2(2p2 − 1)2

 ,
and the coherent vector for the first qubit s(1) = 0. So that case II applies. The K(1) does
not have a single triply degenerate eigenvalue, for all the p, except for the p = 0 and p = 1.
Therefore, Nl(ρ) 6= Dl(ρ) for all the p between 0 and 1. The results are shown in Fig.(1c). The
last example consists of the states

ρ(p) = p|GHZ〉〈GHZ|+ (1− p)|GHZ1〉〈GHZ1|,
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where |GHZ−〉 = 1√
2
(|001〉 − |110〉) The K(1) matrix of this state is

K(1) =

 2(p2 − (1− p)2) 0 0
0 2(p2 − (1− p)2) 0
0 0 2(p2 − (1− p)2)

 ,
and the coherent vector for the first qubit s(1) = 0. So that case II applies. The K(1) does have
a single triply degenerate eigenvalue, for all the p. Therefore Nl(ρ) = Dl(ρ) for all p as shown
in Fig.(1d).
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