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Abstract

We investigate the quantum correlation dynamics of three independent qubits each lo-
cally interacting with a zero temperature non-Markovian reservoir by using the Geometric
measure of quantum discord (GQD). The dependence of quantum correlation dynamics
on amount of non-Markovian, the degree of initial quantum correlation and purity of the
initial states are studied in detail. It is found that the quantum correlation of such three
qubits system revives after instantaneous disappearance period when a proper amount of
non-Markovian is present. A comparison to the pairwise quantum discord and entangle-
ment dynamics in three qubits system is also made.
Keywords: Geometric measure, Quantum discord, non-Markovian, Quantum Correla-
tion Dynamics.
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1 Introduction

Understanding quantum correlations in a multipartite quantum state is a fundamental open
problem. In quantum information theory, the problem of characterization of correlations present
in a quantum state has been a fundamental problem generating intense research effort in the last
two decades [1, 2]. Correlations in quantum states, with far-reaching implications for quantum
information processing, are usually studied in the entanglement-versus-separability scenario [1]
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leading to important insights in quantum computing [3], quantum communication protocols like
teleportation [4, 5], superdense coding [6], cryptography [7], and so on. However, some results
showed that quantum correlations cannot only be limited to entanglement, because separable
quantum states can also have correlations which are responsible for the improvement of some
quantum tasks that cannot be achieved by classical means [8, 9]. An alternative classification
for correlations based on quantum measurements has arisen in recent years and also plays an
important role in quantum information theory [10, 11]. This is the quantum-versus-classical
paradigm for correlations. The first attempts in this direction were made by Ollivier and Zurek
[12] and by Henderson and Vedral [13], who studied quantum correlations from a measurement
perspective and introduced quantum discord as a measure of quantum correlations which has
generated increasing interest [14, 15]. Luo and Fu have suggested that the quantum discord
D(ρ) can be expressed alternatively as the minimal loss of correlations caused by the non-
selective von Neumann projective measurement given by the set of orthogonal 1D projectors
{Πa

i } acting on one part of the system [16],

D(ρ) = min
Πa

[I(ρ)− I(Πa((ρ))], (1)

where

Πa(ρ) =
∑
i

(
Πa
i ⊗ Ib

)
ρ
(
Πa
i ⊗ Ib

)
.

Here the minimum is over the von Neumann measurements Πa = {Πa
i } on a part say a of a

bipartite system ab in a state ρ with reduced density operators ρa and ρb and Πa(ρ) is the
resulting state after the measurement. I(ρ) = S (ρa) + S

(
ρb
)
− S(ρ) is the quantum mutual

information, S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy and Ib is the identity operator
on part b.
For tripartite and larger systems, several generalizations of discord have been proposed. In
Ref. [17] a symmetric multipartite discord was defined based on relative entropy and local
measurements. Another definition of multipartite discord was provided in Ref. [18], as the sum
of bipartite discords after making successive measurements. An approach using relative entropy
was defined in Ref. [19] to define genuine quantum and classical correlations in multipartite
systems. Ref. [20] introduced the notion of quantum dissension defined as the difference
between tripartite mutual information after a single measurement.
It is difficult to generalize the quantum discord in terms of quantum mutual information for
multipartite cases [20, 21]. To overcome this hurdle, Dakic et al [22], have provided a geometric
measure of quantum discord (GQD) as the distance for a given state to the closest classical
quantum state

D(ρ) = min
χ∈Ω0

||ρ− χ||2, (2)

with the minimum taken over the set Ω0 of zero discord states and where Ω0 is the set of
classical-quantum states (set of zero-discord states D(χ) = 0) and ∥ρ − χ∥2 := Tr(ρ − χ)2 is
the square Hilbert-Schmidt norm. Dakic et al [22] also obtained an explicit formula for GQD
for a two qubit system based on the Hilbert-Schmidt distance. Consider a two-qubit state ρ
expressed in its Bloch representation as

ρ =
1

4

(
Ia ⊗ Ib +

3∑
α=1

(
xασα ⊗ Ib + Ia ⊗ yασα

)
+

3∑
α,β=1

tαβσα ⊗ σβ

)
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with {σα} being the Pauli operators. Then its geometric measure of quantum discord is given
by [22]

D(ρ) =
1

4

(
∥x∥2 + ∥T∥2 − λmax

)
(3)

Here x⃗ := (x1, x2, x3)
t and y⃗ := (y1, y2, y3)

t are coherent (column) vectors for single qubit re-
duced density operators, T = (tαβ) is the correlation matrix, and λmax is the largest eigenvalue
of the matrix x⃗x⃗t+TT t. The norms of vectors and matrices are the Euclidean norms, for exam-
ple, ∥x∥2 :=

∑
α x

2
α. Here and throughout this paper, the superscript t denotes the transpose

of vectors and matrices and by the norm of any tensor, we mean its Euclidean norm, that is,
the square of the norm of a tensor is the sum of squares of its elements.
Hassan and Joag [28] provided an analytical formula for calculation of geometric measure of
quantum discord for a N -qubit state corresponding to the von Neumann measurement on the
kth part.

Recently, a natural generalization of quantum discord as originally defined in Ref. [12, 13]
is made for multipartite systems using the concept of conditional measurements, which satisfies
all of the postulates of a multipartite discord [4], but there is no analytical formula which can
be used.

Generally, an actual quantum system is not closed and therefore will unavoidably be af-
fected by surrounding environments [24]. Due to the interaction with its environment, the
quantum system is very fragile and easy to lose its quantum correlation, which is the main
problem for the implementation of quantum information processing. In open composite quan-
tum systems, the dynamic behavior of the correlations strongly depends on the noise generated
by the surrounding environment. For a given quantitative system, the characterization of the
environment as Markovian (no memory) or non-Markovian (with memory) is determined by
the ratio between its typical correlation time and the system relaxation time. It is believed
that the quantumness captured by discord is different from entanglement [12, 14]. It was also
investigated under the Markovian environment in [25] for dissipative dynamics that the dis-
cord with an asymptotical decrease is more robust than the entanglement with sudden death
under the same conditions. Wang at el [26] studied the dynamics of the quantum discord by
exactly solving a model consisting of two independent qubits subject to two zero-temperature
non-Markovian reservoirs, respectively. This implies that the quantum discord is more useful
than the entanglement to describe the quantum correlation involved in quantum systems. It
was also investigated the dynamics of pairwise quantum discord (QD) for a mixed three-qubit
W -type state in three independent non-Markovian reservoirs at zero temperature [27].

The paper is organized as follows. In sec. 2, we present the geometric measure of quantum
correlation for multipartite systems. In sec. 3, we review the dynamics of a single qubit in
non-Markovian environment, the procedure to solve the dynamics of three independent qubits
is given and get the evolution of three-qubit density matrix. In sec. 4, we study the three-
qubit quantum correlation dynamics in non-Markovian environment at zero temperature. A
conclusion is given in sec. 5.

2 Quantum Correlation

Geometric measure has been used to measure the multipartite discord of quantum state with
high dimensions. Hassan and Joag [28] gave an exact computable formula for calculation of
geometric measure of quantum discord for a N -qubit states. Following the same notation in
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Ref. [28],

σ
(1)
α1 = (σα1 ⊗ I2 ⊗⊗I2)
σ
(2)
α2 = (I2 ⊗ σα2 ⊗ I2)

σ
(1)
α1 σ

(2)
α2 = (σα1 ⊗ σα2 ⊗ I2)

(4)

We can write a three qubits state ρ123 in the Bloch representation as

ρ123 =
1

8
{I8 +

3∑
k=1

∑
αk

sαk
σ(k)
αk

+
3∑

k ̸=k′=1

∑
αk,αk′

tαkαk′
σ(k)
αk
σ(k′)
αk′

+
∑

α1α2α3

tα1α2α3σ
(1)
α1
σ⟨2)
α2
σ(3)
α3
} (5)

where s(k)(k = 1, 2, 3) is a Bloch (coherent) vector corresponding to the kth qubit, s(k) =
[sαk

]3αk=1, which is a tensor of order 1 defined by

sαk
= Tr

[
ρσ(k)

αk

]
= Tr [ρkσαk

] , (6)

We denote the tensors of order 2 by T {k,k′} =
[
tαkαk′

]
which are defined by

tαkαk′
= Tr

[
ρ123σ

(k)
αk
σ(k′)
αk′

]
(7)

and the tensor of order 3 by T = [tα1α2α3 ] , which are defined by

tα1α2α3 = Tr
[
ρ123σ

(1)
α1
σ(2)
α2
σ(3)
α3

]
(8)

Then the geometric measure of quantum discord for a three qubits state corresponding to the
von Neumann measurements {Π̃(k)} on the kth qubit is given by,

Dk (ρ123) =
1

8

{∥∥s(k)∥∥2 + 3∑
k′ ̸=k=1

∥∥∥T {k,k′}
∥∥∥2 + ∥T ∥2 − η(k)max

}
; k = 1, 2, 3. (9)

Here η
(k)
max is the largest eigenvalue of the matrix G(k) which is a 3 × 3 real symmetric matrix,

defined as

G(k) = s(k)
(
s(k)
)t
+

3∑
k′ ̸=k=1

(
T {k,k′}

)t
T {k,k′} +T(k) (10)

where T(k) = [ταkβk ] is a 3× 3 real matrix defined element wise as

ταkβk =
∑
αk1

αk2

tαk1
αk2

αk
tαk1

αk2
βk

αk1 , αk1 , αk, βk = 1, 2, 3; k1, k2 = 1, 2, 3 ̸= k.

Therefore, the geometric measure of quantum discord GQD (as represented bellow by
D1, D2, D3) of the successive measurement states and total quantum correlations TQC (as
represented by Q) present in a three qubits state ρ123 is given by [28],

D1(ρ123)

D2(Π̃
(1)(ρ123))

D3(Π̃
(2)(Π̃(1)(ρ123)))

Q(ρ123) = D1(ρ123) +D2(Π̃
(1)(ρ123)) +D3(Π̃

(2)(Π̃(1)(ρ123))). (11)

The calculation of each term is shown in the appendix.

274



J. Amr. Uni. 02 (2022) p.271 M. A. Shukri et al

3 MODEL

We consider a system of three non-interacting qubits, that is, A, B, and C, locally interacting
with the reservoirs RA, RB, and RC , respectively, at zero-temperature. The single qubit-
reservoir pair is described by the following Hamiltonian

Ĥ = ω0σ+σ− +
∑
k

(
ωkb

†
kbk + gkbkσ+ + g∗kb

†
kσ−

)
(12)

with ω0 being the transition frequency of the qubit and σ± are the corresponding qubit’s raining
and lowering operators. The index k labels different field modes of reservoir with frequencies
wk, b

†
k and bk are the creation and annihilation operators with gk being the coupling constant to

the qubit [24, 29, 30]. This Hamiltonian represents one among the few open quantum systems
amenable for an explicit solution [31]. The dynamics of single qubit s can be described by the
reduced density matrix ρs(t) which can be written, in the basis {|0⟩, |1⟩} as [24, 29, 32]

ρ̂s(t) =

(
Ptρ

s
11(0)

√
Ptρ

s
10(0)√

Ptρ
s
01(0) ρs00(0) + (1− Pt) ρ

s
11(0)

)
(13)

where the function Pt obeys the differential equation

Ṗt = −
∫ t

0

dt1f (t− t1)Pt1 , (14)

and the correlation function is related to the spectral density J(ω) of the reservoir by f (t− t1) =∫
dωJ(ω)ei(ω0−ω)(t−t1). To get the exact form of Pt thus depends on the choice of spectral density

of the reservoir [24]. In our model, we use the Lorentzian spectral distribution

J(ω) =
1

2π

γ0λ
2

(ω0 − ω)2 + λ2
(15)

where λ denotes spectral width of the coupling, it is related to the reservoir correlation time τB
via τB ≈ λ−1, while γ0 is related to the decay of the atomic excited state in the Markovian limit
of spectrum and is related to the qubit relaxation time by τR ≈ γ−1

0 . The relation between
parameters γ0 and λ distinguishes between Markovian and non-Markovian regimes. In the
Markovian regime there is γ0 < λ/2 or τR > 2τB, and the non-Markovian regime corresponds
to γ0 > λ/2 or τR < 2τB, and the previously lost quantum information may be feedback into
the system again. According to spectral density function J(ω) given in Eq.(15), the solution of
Eq.(14) give

Pt = e−λt[cos(
dt

2
) +

λ

d
sin(

dt

2
)]2, (16)

where d =
√

2γ0λ− λ2 [24, 29], which is an oscillating function that has discrete zeros t =
2[nπ − arctan(d/λ)]/d with n being an arbitrary integer.

By using the evolution of the reduced density matrix elements for the single qubit ρs
íi
(t) =∑

lĺA
lĺ
íi
(t)ρs

lĺ
(0), to construct the reduced density matrix ρ(t) for the three-qubit system as

[29, 30],

ρii′,jj′,kk′(t) =
∑

ll′,mm′,nn′

All
′

ii′(t)B
mm′

jj′ (t)Cnn′

kk′ (t)ρll′,mm′,nn′(0). (17)
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By means of Eqs. (13), (16) and (17) and under the standard product basis |1⟩=|111⟩, |2⟩=|110⟩,
|3⟩=|101⟩, |4⟩=|100⟩, |5⟩=|011⟩, |6⟩=|010⟩, |7⟩=|001⟩, |8⟩=|000⟩}, we obtain the diagonal ele-
ments of the reduced density matrix for three-qubit system as

ρ11(t) = P 3
t ρ11(0),

ρ22(t) = P 2
t ρ22(0) + P 2

t (1− Pt) ρ11(0),

ρ33(t) = P 2
t ρ33(0) + P 2

t (1− Pt) ρ11(0),

ρ44(t) = Ptρ44(0) + Pt (1− Pt) ρ33(0) + Pt (1− Pt) ρ22(0) + Pt (1− Pt)
2 ρ11(0),

ρ55(t) = P 2
t ρ55(0) + P 2

t (1− Pt) ρ11(0),

ρ66(t) = Ptρ66(0) + Pt (1− Pt) ρ55(0) + Pt (1− Pt) ρ22(0) + Pt (1− Pt)
2 ρ11(0),

ρ77(t) = Ptρ77(0) + Pt (1− Pt) ρ55(0) + Pt (1− Pt) ρ33(0) + Pt (1− Pt)
2 ρ11(0),

ρ88(t) = ρ88(0) + (1− Pt) [ρ77(0) + ρ66(0) + ρ44(0)] + (1− Pt)
2 [ρ55(0) + ρ33(0) + ρ22(0)]

+ (1− Pt)
3 ρ11(0) (18)

and the off-diagonal elements as:

ρ12(t) = P 2
t

√
Ptρ12(0)

ρ13(t) = P 2
t

√
Ptρ13(0)

ρ14(t) = P 2
t ρ14(0)

ρ15(t) = P 2
t

√
Ptρ15(0)

ρ16(t) = P 2
t ρ16(0)

ρ17(t) = P 2
t ρ17(0)

ρ18(t) = Pt
√
Ptρ18(0)

ρ23(t) = P 2
t ρ23(0)

ρ24(t) = Pt
√
Ptρ24(0) + Pt

√
Pt (1− Pt) ρ13(0)

ρ25(t) = P 2
t ρ25(0)

ρ26(t) = Pt
√
Ptρ26(0) + Pt

√
Pt (1− Pt) ρ15(0)

ρ27(t) = Pt
√
Ptρ27(0)

ρ28(t) = Ptρ28(0) + Pt(1− Pt)ρ17(0)

ρ34(t) = Pt
√
Ptρ34(0) + Pt

√
Pt (1− Pt) ρ12(0)

ρ35(t) = P 2
t ρ35(0)

ρ36(t) = Pt
√
Ptρ36(0)

ρ37(t) = Pt
√
Ptρ37(0) + Pt

√
Pt (1− Pt) ρ15(0)

ρ38(t) = Ptρ38(0) + Pt (1− Pt) ρ16(0)

ρ45(t) = Pt
√
Ptρ45(0)

ρ46(t) = Ptρ46(0) + Pt (1− Pt) ρ35(0)

ρ47(t) = Ptρ47(0) + Pt (1− Pt) ρ25(0)
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ρ48(t) =
√
Ptρ48(0) +

√
P t (1− Pt) ρ37(0) +

√
P t (1− Pt) ρ26(0) +

√
Pt(1− Pt)

2ρ15(0)

ρ56(t) = Pt
√
Pt(1− Pt)ρ12(0) + Pt

√
Ptρ56(0)

ρ57(t) = Pt
√
Pt(1− Pt)ρ13(0) + Pt

√
Ptρ57(0)

ρ58(t) = Ptρ58(0) + Pt(1− Pt)ρ14(0)

ρ67(t) = Ptρ67(0) + Pt(1− Pt)ρ23(0)

ρ68(t) =
√
Pt(1− Pt)

2ρ13(0) +
√
Pt(1− Pt)ρ24(0) +

√
Pt(1− Pt)ρ57(0) +

√
Ptρ68(0)

ρ78(t) =
√
Pt(1− Pt)

2ρ12(0) +
√
Pt(1− Pt)ρ34(0)

+
√
Pt(1− Pt)ρ56(0) +

√
Ptρ78(0). (19)

4 Non-Markovian Quantum Correlation Dynamics

For three-qubit states, there are two type of nonequivalent entangled states, which called
|GHZ⟩-state and |W ⟩-state [33], and any fully entangled three qubits state is stochastic lo-
cal operations and classical communication SLOCC-equivalent to either |GHZ⟩ and |W ⟩ [33].
So, this states are important in quantum information and computation processing. We consider
two initial states constructed with |GHZ⟩− and |W ⟩− Werner-like states,

ρψ = r|ψ⟩⟨ψ|+ 1− r

8
I8, ρ

ϕ = r|ϕ⟩⟨ϕ|+ 1− r

8
I8. (20)

Here r (0 ≤ r ≤ 1) denotes the purity of the initial state and |ψ⟩ = αψ|000⟩ + βψ|111⟩, |ϕ⟩ =
αϕ|001⟩+βϕ|010⟩+ηϕ|100⟩. It is obvious that the states |ψ⟩, |ϕ⟩ are the |GHZ⟩ and |W ⟩ respec-
tively with αψ(ϕ) real, βψ(ϕ) = |βψ(ϕ)|eiδ and ηϕ = |η|eiϵ where α2

ψ+ |βψ|2 = 1, α2
ϕ+ |βϕ|2+ |ηϕ|2 =

1. As it is known the |GHZ⟩ and |W ⟩ states are different classes of entanglement, we expect
that the two initial states might have some difference in quantum correlation dynamics mea-
sured by geometric measures. Since, the exact expression of GQD and TQC calculations over
time of dynamics are rather complicated and not very enlightening, we study only numerically
of the GQD and TQC dynamics as follow.
Case 1 In this case, we mainly study how the GQD and TQC dynamics is influenced by
the degree of non-Markovian. For this purpose, starting from maximum quantum correlation
pure ρψ, ρϕ initial states, that is α2

ψ = β2
ψ = 1/2, α2

ϕ = β2
ϕ = η2ϕ = 1/3, and r = 1, we

plot D1(ρ123), D2(Π̃
(1)(ρ123)), D3(Π̃

(2)(Π̃(1)(ρ123))) and Q(ρ123) as functions of γ0t for different
four values of λ/γ0 (= 2.5, 0.1, 0.05, 0.01) as showing in Fig. 1 and Fig. 2 for initial states ρψ

and ρϕ respectively. According to the condition for Markovian and non-Markovian dynamics
regimes, Markovian dynamics take place when λ/γ0 = 2.5, while λ/γ0 = 0.1, 0.05, 0.01 the
non-Markovian dynamics is relevant.

Figures 1 and 2 show three similar characters. Firstly, in non-Markovian regime the evo-
lution of quantum correlation, as measured by D1, D2, D3 and Q, differs in essence from
that in Markovian regime. Accurately, D1, D2, D3 and Q in Markovian regime (λ/γ0 = 2.5)
vanishes only in asympotical way without revival, while in non-Markovian regime (λ/γ0 =
0.1, 0.05, 0.01) decays gradually to zero but reappears after a period of time with damping
amplitudes, which is in a good agreement with the corresponding result described in Ref. [26] of
quantum discord in two-qubit systems. Secondly, in the non-Markovian regime, the decay rate
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Figure 1: D1 (a), D2 (b), D3 (c), and TQC (d) vs. γ0t for λ/γ0 =
2.5 (dash-dotted line), λ/γ0 = 0.1 (solid line), λ/γ0 = 0.05 (dashed line), λ/γ0 =
0.01 (dotted line), with α2

ψ = β2
ψ = 1/2 and r = 1.

and revival amplitudes depend on the degree of non-Markovian λ/γ0 ( that is, non-Markovian
degree increases with λ/γ0 decreasing). Precisely, the decay rate decreases, the revival ampli-
tude and its number increase with non-Markovian degree increasing. Thirdly, there is no decay
rate of D3 of both Fig. 1c (for GHZ-state) and Fig. 2c (for W-state) and it has anomalous
behavior differ from that of D1 and D2 measures in Figs. 1a, 1b (for GHZ-state) and Figs. 2a,
2b (for W-state).

Furthermore, Fig. 1 and Fig. 2 show four different characters. Firstly, the number of
revival amplitude of Fig. 2 (for W-state) is more than that of Fig. 1 (for GHZ-state) in non-
Markovian dynamics regime. Secondly, the decay rate of Fig. 1b, D2, (for GHZ-state), is faster
than that of Fig. 2b (for W-state) and there is no revival amplitude of Fig. 1b, D2, in non-
Markovian dynamics regime for GHZ-state, while there is of Fig. 2b (for W-state). Thirdly,
for λ/γ0 = 0.01, the top of first revival amplitude of D1 in Fig. 1(a) (for GHZ-state) is normal
while the corresponding one in Fig. 2(a) (for W-state) is distorted. Fourthly, the anomalous
behavior of Fig. 1c differ from that of Fig. 2c, the revival amplitude reappears once in Fig. 1c,
while the corresponding one in Fig. 2c reappears more than one and differ in their forms.

In contrast to the Figs. 1, 2 in Ref. [35], the entanglement in Markovian regime decays
exponentially to zero and finally vanishes but the entanglement in non-Markovian regime decays
to zero and reappears after a period of time with damping amplitudes. As there is no interaction
between three qubits initially, this revival phenomenon is due to single qubit non-Markovian
dynamics resulting from the memory effect of the environment.
Case 2 Another aspect of interest is how the TQC dynamics of three qubits, as measued
by Q, is affected by the degree of initial quantum correlation represent by αψ(ϕ), βψ(ϕ) and

278



J. Amr. Uni. 02 (2022) p.271 M. A. Shukri et al

0 20 40 60 80 100 120 140 160 180 200

0
t

0

0.1

0.2

0.3

0.4

0.5

D
1
(

1
2

3
)

/
0
=0.01

/
0
=0.05

/
0
=0.1

/
0
=2.5

(a)

0 20 40 60 80 100 120 140 160 180 200

0
t

0

0.05

0.1

0.15

0.2

0.25

D
2
(

1
2

3
)

/
0
=0.01

/
0
=0.05

/
0
=0.1

/
0
=2.5

(b)

0 10 20 30 40 50 60

0
t

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

D
3
(

1
2

3
)

/
0
=0.01

/
0
=0.05

/
0
=0.1

/
0
=2.5

(c)

0 20 40 60 80 100 120 140 160 180 200

0
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
(

1
2

3
)

/
0
=0.01

/
0
=0.05

/
0
=0.1

/
0
=2.5

(d)

Figure 2: D1 (a), D2 (b), D3 (c), and TQC (d) vs, γ0t for λ/γ0 = 2.5 (dash-dotted line),
λ/γ0 = 0.1 (solid line), λ/γ0 = 0.05 (dashed line), λ/γ0 = 0.01 (dotted line), with α2

ϕ = β2
ϕ =

η2ϕ = 1/3 and r = 1.

ηϕ. We assume that initial states ρψ (for GHZ-state) and ρϕ (for W-state) with; r = 1, βψ =√
1− α2

ψ, βϕ = ηϕ =
√

(1− α2
ϕ)/2, αψ(ϕ) = a and fixing the non-Markovian degree (λ/γ0 =

0.01). For these conditions, we plot TQC as a function of γ0t and a2 for ρψ (for GHZ-state)
and ρϕ (for W-state) in left-panel and right-panel of Fig. 3 respectively. It can be seen that the
TQC of both ρψ = |ψ⟩⟨ψ| and ρϕ = |ϕ⟩⟨ϕ| periodically vanishes in accordance with the zero
points of the function Pt following the asymptotically damping. We can also see that the revival
amplitudes of the TQC increases with a2 increasing from 0 to 1/2, reaching its maximum value
at a2 = 1/2, and decreases with a2 increasing from 1/2 to 1 in Fig. 3 left-panel, while Fig. 3
right-panel show that the TQC revival amplitude occurs in all the region of a2 excepting around
and at a2 = 1 equal to zero with amplitudes damping. Comparing influence of initial quantum
correlation on TQC dynamics in three qubits system to that quantum discord dynamics in two
qubits system [26], we find that the effects are in general similar. Comparing entanglement
dynamics in Figs. 3, 4 in Ref. [35] to Figs. 3 in our work, for GHZ-state as measured by
negativity, entanglement shows sudden death (ESD) occurs when 0 ≤ a2 ≤ 1/2 and the dark
period decreases with a2 increasing, while in Fig. 3-left panel in our work the dark period does
not occur in the whole region of a2. Besides, Fig. 4 of Ref. [35] (for W-state) ESD does not
occur in the all region of a2, whereas Fig. 3-right panel of this paper show similar behavior but
revival amplitudes are larger and zero periods are smaller.

Case 3 In this case we analyze how the three qubits TQC dynamics is affected by the presence
of mixedness in initial states regulated by the purity parameter r. We set the parameters in two
initial states as α2

ψ = β2
ψ = 1/2, α2

ϕ = β2
ϕ = η2ϕ = 1/3 and non-Markovian degree (λ/γ0 = 0.01).
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Figure 3: TQC in terms of γ0t and α2 for the initial GHZ-state (left-panel) and W -state
(right-panel), with parameter λ/γ0 = 0.01.

We plot the TQC as a function of γ0t and r for ρψ (for GHZ-state) and ρϕ (for W-state) in
left-panel and right-panel of Fig. 4 respectively. Figure 4 left-panel and right-panel show that
the TQC increases with purity parameter r increasing at t = 0 for both states. Also, it can be
seen that the maximum value and period of revival amplitudes increase with purity r increasing
and when r = 1 the revival amplitudes get the highest value with largest period.

Contrary, the zero periods of TQC increase with purity r decreasing and when r = 0
the zero periods are the largest. The difference between two figures in Fig. 4 is the top of
first revival amplitude in Fig. 4 left-panel is norm, while in Fig.4 right-panel is warped and
the warped revival amplitude increase with λ/γ0 decreasing. Compared with Fig. 3 of Ref.
[27] of pairwise quantum discord dynamics for W-state, Fig. 4 right-panel in this paper show
similar behaviors. In contrast to Fig. 7 and Fig. 8 of Ref. [35] in non-Markovian regime, the
entanglement dynamics sudden death occurs in both states in almost all the region of r, the
TQC in Fig. 4 left-panel and right-panel, in this work, show that no dark period in nearly all
region of r for both same initial states. This phenomenon is further evidence that the TQC is
more robust than the entanglement against decoherence.
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Figure 4: TQC in terms of γ0t and r for the initial GHZ-state (left-panel) and W -state (right-
panel) with parameter λ/γ0 = 0.01.
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5 Conclusion

We have studied the dynamics of quantum correlation of three qubits using exactly solvable
model where each qubit independently and locally interacts with zero-temperature reservoir.
We have discussed the different effects of the Markovian and non-Markovian reservoir. Spe-
cially, in the first case, we have analyzed the effects of the amount of non-Markovian λ/γ0
on the geometric measure of quantum discord in detail. We obtain that the two types initial
states have some similar and different characters. The non-Markovian decay rate decreases and
revival amplitude, in both its value and numbers, increases with the amount of non-Markovian
increasing. Moreover, there is no decay rate of D3 for both initial GHZ and W states and
D3 has anomalous behavior different from that for D1 and D2 evolution. Also, this anomalous
behavior in D3 evolution differs for initial GHZ and W states. In the second case, we ana-
lyzed the influence of the initial quantum correlation on the geometric measure of quantum
discord in non-Markovian regime. We observe that the effects of initial quantum correlation on
TQC dynamics displays different behaviors for the two types of three qubits quantum states
as expected. In the third case, we have discussed the effects of the purity r on quantum corre-
lation dynamics and compared with that of entanglement dynamics of three qubits using same
conditions. This implies that quantum discord is more robust than entanglement against de-
coherence. Moreover, geometric measure of quantum discord have similar behavior to that for
corresponding initial state in pairwise quantum discord of three qubits and that in two-qubit
system.
Acknowledgments We thank the anonymous referees whose comments have contributed to-
ward the improvement of this paper. This study is self funded by the authors.

Appendix

If we have the state of three-qubits ρ expressed in its Bloch representation as in Eq.(5).

1. We express ρ in the orthonormal bases
{
X

(m)
im

}
, im = 1, 2, 3, 4 as the generators of

SU(2m); m = 1, 2, 3 labeling for qubit. ρ12···N =
∑

i1i2i3
Ci1i2i3X

(1)
i1

⊗X
(2)
i2

⊗X
(3)
i3

, where

X
(m)
1 = 1√

2
I2 and X

(m)
im

= 1√
2
σim−1; im = 2, 3, 4, σi being the Pauli operators [28].

2. We calculate the tensor C of ρ state as

Ci1i2i3 = Tr
(
ρX

(1)
i1

⊗X
(2)
i2

⊗X
(3)
i3

)
; i1, i2, i3 = 1, 2, 3, 4. (A1)

the three-way array (tensor of order 3) with size 4× 4× 4. The norm of tensor C is

∥C∥2 =
4∑

i1i2i3

C2
i1i2i3

.

3. We calculate s(m) a Blech vector corresponding to m =th qubit m = 1, 2, 3,

s
(1)
i = Tr (ρσi ⊗ I ⊗ I) ,

s
(2)
j = Tr (ρI ⊗ σj ⊗ I) ,

s
(3)
k = Tr (ρI ⊗ I ⊗ σk) , (A2)

281



J. Amr. Uni. 02 (2022) p.271 M. A. Shukri et al

the correlation matrices for two-qubit as

T{1,2} = [t
(12)
ij ] = [Tr (ρσi ⊗ σj ⊗ I)] = Ci+1,j+1,1,

T{1,3} = [t
(13)
ik ] = [Tr (ρσi ⊗ I ⊗ σk)] = Ci+1,1,k+1

T{2,3} = [t
(23)
jk ] = [Tr (ρI ⊗ σj ⊗ σk)] = C1,j+1,k+1, (A3)

the three-way correlation array for ρ state as

T = [tijk] = [Tr (ρσi ⊗ σj ⊗ σk)] = Ci+1,j+1,k+1, i, j, k = 1, 2, 3 (A4)

T(3) is 3× 3 matrix, defined elementwise as

T(3) = [τ
(3)
iℓ ] = [

∑
jk

tijktℓjk]. (A5)

4. We calculate 3× 3 real symmetric matrix G(1) using Eqs. A2, A3 and A5 as

G(1) = s(1)(s(1))t + (T{1,2})tT{1,2} + (T{1,3})tT{1,3} +T(3), (A6)

and we find the largest eigenvalue of G(1), η
(1)
max and corresponding eigenvector of it V

(1)
max.

5. We calculate D1, quantum discord (corresponding to the Von Neumann measurement on
the first qubit), for a three-qubit quantum state using Eqs. A2, A3 and A4 as

D1(ρ) =
1

23
[
∥s(1)∥2 + ∥T{1,2}∥2 + ∥T{1,3}∥2 + ∥T ∥2 − η(1)max

]
.

6. We put ê = V
(1)
max to calculate a1 =

1√
2
(1, ê) and a2 =

1√
2
(1,−ê).

7. We calculate the b1 and b2 matrices Eqs. (13,14) in Ref. [28] of the state Π̃(1)(ρ) using
Eq. A1, a1 and a2 as

b1jk =
∑
i

cijkaii , b2jk =
∑
i

cijka2i

8. We calculate the tensor C ′ of Π̃(1)(ρ) = ρ̃ as

C ′
ijk = a1ib1jk + a2ib2jk

proof:

C ′
ijk = Tr

(
Π̃(1)(ρ)Xi ⊗Xj ⊗Xk

)
= Tr

(
2∑
ℓ=1

pℓ|ℓ⟩⟨ℓ| ⊗ ρ23/ℓ (Xi ⊗Xj ⊗Xk)

)

=
2∑
ℓ=1

Tr (|ℓ⟩⟨ℓ|Xi)Tr
(
pℓρ23/ℓXj ⊗Xk

)
=

2∑
ℓ=1

⟨ℓ |Xi| ℓ⟩Tr
(
pℓρ23/ℓXj ⊗Xk

)
C ′
ijk =

2∑
ℓ=1

aℓibℓjk = a1ib1jk + a2ib2jk (A7)
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the norm of C ′
ijk is ∥C ′

ijk∥2 =
∑

ijk C
′2
ijk.

9. We repeat the step (iii) for the state Π̃(1)(ρ) = ρ̃, to calculate the coherent vectors s′
(m)

,
the correlation matrix for two-qubit, three-way correlation array and T(3) as

s
′(1)
j = Tr

(
Π̃(1)(ρ)σj ⊗ I ⊗ I

)
= 2

3
2C ′

j+1,1,1

s
′(2)
j = Tr

(
Π̃(1)(ρ)I ⊗ σj ⊗ I

)
= 2

3
2C ′

1,j+1,1

s
′(3)
j = Tr

(
Π̃(1)(ρ)I ⊗ I ⊗ σj

)
= 2

3
2C ′

1,1j+1 (A8)

and

t
′(12)
ij = Tr

(
Π̃(1)(ρ)σi ⊗ σj ⊗ I

)
= 2

3
2C ′

i+1,j+1,1

t
′(13)
ik = Tr

(
Π̃(1)(ρ)σi ⊗ I ⊗ σk

)
= 2

3
2C ′

i+1,1,k+1

t
′(23)
jk = Tr

(
Π̃(1)(ρ)I ⊗ σj ⊗ σk

)
= 2

3
2C ′

1,j+1,k+1 (A9)

and

t′ijk = Tr
(
Π̃(1)(ρ)σi ⊗ σj ⊗ σk

)
= 2

3
2C ′

i+1,j+1,k+1 (A10)

where ∥T ′∥2 =
∑

ijk t
′2
ijk,

T̃
(3)
iℓ =

∑
jk

t′jikt
′
jℓk. (A11)

10. We repeat steps (iv) and (v) using Eqs. A8, A9, A10 to calculate G′(2) real symmetric

matrix for density matrix Π̃(1)(ρ) as

G′(2) = S ′(2)(S ′(2))t + (T′{1,2})tT′{1,2} + (T′{2,3})tT′{2,3} +T′(3), (A11)

we find the largest eigenvalue η
(2)
max of G′(2) and corresponding eigenvector V

(2)
max. We cal-

culate D2 as

D2(Π̃
(1)(ρ)) =

1

23
[
∥s′(2)∥2 + ∥T′{1,2}∥2 + ∥T′{2,3}∥2 + ∥T ′∥2 − η(2)max

]
.

11. We put ê2 = V
(2)
max to calculate

ã1 =
1√
2
(1, ê2) , ã2 =

1√
2
(1,−ê2)

12. We repeat the step (vii) to calculate b̃1 and b̃2 matrix of the state Π̃(2)
(
Π̃(1) (ρ)

)
= ˜̃ρ.

b̃1ik =
∑
j

cijkã1j , b2ik =
∑
j

cijkã2j
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13. We repeat the step (viii) to calculate

C ′′
ijk = ã1j b̃1ik + ã2j b̃2ik

.

14. We repeat the step (ix) to calculate the coherent vectors s′′
(m)

, the correlation ma-
trix for two-qubit t′′(12), t′′(23), t′′(13), three-way correlation array t′′ and T′′(3) for state

Π̃(2)
(
Π̃(1) (ρ)

)
.

15. We repeat step (x) to calculate G′′(3) for state Π̃(2)
(
Π̃(1) (ρ)

)
= ˜̃ρ and find η

(3)
max and using

it to calculate D3

(
Π̃(2)

(
Π̃(1) (ρ)

))
.

16. We calculate TQC, Q(ρ) as in Eq. (11).
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[2] O. Gühne and G. Tóth, Phys. Rep. 474.1-6 (2009): 1-75.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information , Cam-
bridge University Press, Cambridge (2002).
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