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Abstract

we focus on studying the dynamics of infectious disease spreading SIR model on ran-
dom networks. We investigate how various parameters of the network influence the be-
havior of spreading and analyze the occurrence of phase transitions within this network
framework. Our analysis reveals the critical role of network connectivity in shaping the
dynamics of disease transmission and highlights the presence of mean-field phase tran-
sitions. Additionally, we employ both analytical techniques and simulation methods to
extract critical thresholds for the model and compare them for validation. By delving into
the intricate dynamics of disease spreading on random networks, this work offers valu-
able insights into the mechanisms driving epidemic propagation and provides a theoretical
foundation for studying disease control strategies and public health interventions.

1 Introduction

Because many real-world phenomena incorporate spreading dynamics on complex networks,
the topic has received much attention over the last decade [1, 2]. Notable examples include
the spread of transmitted diseases through contact networks,the spread of malware on wire-
less networks, and the spread of computer viruses through email networks. In each case the
spreading dynamics are strongly affected by network topology, and this complicates the task of
understanding their behavior. Existing studies of spreading dynamics have focused on both the-
oretical aspects (e.g., nonequilibrium critical phenomena) and practical issues (e.g., proposing
efficient immunization strategies). Researchers have focused on developing ways of accurately
identifying epidemic thresholds because of their important ramifications in many real-world
scenarios [3, 4]. Theoretically speaking, an epidemic threshold characterizes the critical condi-
tion above which a global epidemic occurs. Being able to predict an epidemic threshold allows
us to determine the critical exponents and Griffiths effects, which are important in research
on nonequilibrium phenomena. Practically speaking, quantifying an epidemic threshold allows
us to determine the effectiveness of a given immunization strategy. A proposed immunization
strategy is effective if it increases the epidemic threshold. In addition, knowing the epidemic
threshold enables us to more accurately determine the optimum source node [5].

A fundamental question in the study of epidemics is whether a disease will spread throughout
a population or die out. This depends on factors such as infection and recovery rates, as well
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as the structure of connections between individuals. For the SIR model on many kinds of
networks, the epidemic threshold and the critical infection rate above which the disease infects
a nonzero fraction of the population were previously derived [6, 7]. In this chapter we study
the model of epidemic spreading SIR model on random networks.

2 Model and Methods

The SIR model of epidemic spreading on the networks can be described as follows [8]: Consider
a population of N individuals living at the sites of a one dimensional lattice. The individual can
be in one state of three states, susceptible (S), infected (I) and refractory (R). The interaction
between the nodes on the lattice occurs as follows: the nodes in the state I on the network can
infect any one of their neighbours which are in state S with probability λ at each time step.
The nodes in state I pass to the state R after an infection time τI . During the R phase, the
nodes are immune and do not infect. The dynamics of the model are summarized as

S + I
λ→ I + I, I

τI→ R, (1)

In this work we follow Grassberger’s second model in Ref. [8] and we set τI = 1. This
model will evolve ultimately to the state where there are no infected individuals in the lattice,
which will happen for any initial state of I individuals and any values of infection probability
λ. That means the final state of this model is a mixture of S and R individuals. Therefore,
this state which is free of infected individuals is the absorbing state of this model. To evaluate
to what extent the infection has spread within the nodes of the network, we use the density of
refractory nodes ⟨ρ⟩ as a measure for that. This quantity is called also the order parameter of
the system, which can be defined as follows

⟨ρ⟩ = NR

N
(2)

where N is the total number of lattice sites, NR is the total number of lattice sites in state R,
and ⟨ρ⟩ stands for the average over different network realizations.

We construct the random network using the Erdös-Rényi (ER) [9] method. A random
network is defined as follows [10]: initially, we have N isolated nodes, with each pair of nodes

connected with a probability p. This leads to a Poisson degree distribution P (k) = e−⟨k⟩ ⟨k⟩k
k!

,
where the average degree (connectivity) is determined by

⟨k⟩ = pN (3)

This quantity plays a pivotal role in these types of networks. Depending on the value of
⟨k⟩, we can discern between three cases.

1. In the case when ⟨k⟩ = pN < 1 the graph is composed of an isolated tree.

2. The case when ⟨k⟩ > 1 a giant cluster appears.

3. The case when ⟨k⟩ ≥ ln(N) the graph is totally connected.

Fig. 1 depicts this behavior of a random network, where we visualize the random network for
three different values of connectivity ⟨k⟩ = 0.9, 2.0 and 6.0 for a lattice of size N = 100 sites.
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Figure 1: Random network for three values of connectivity ⟨k⟩ = 0.9, 2.0 and 6.0 for a lattice
of size N = 100 sites.

3 Spreading on random networks

In this section, we examine how the infection spreads among nodes in the random network. To
measure this, we utilize the density of immune nodes, denoted as ⟨ρ⟩ (Eq. (2)). We conduct
simulations of our model across various values of connectivity, denoted as ⟨k⟩, and infection
probability, denoted as λ. In our simulations of the SIR model, we employ a lattice comprising
N = 104 sites and allow the system to evolve until all infected nodes are cleared. We compute
the average density of immune nodes over 1000 different configurations. Fig. 2 illustrates the
density of immune nodes, ⟨ρ⟩, as a function of the infection probability, λ, for various values
of connectivity, ⟨k⟩, categorized as follows: ⟨k⟩ < 1, 1 < ⟨k⟩ < ln(N), and ⟨k⟩ ≥ ln(N). The
figure depicts how the density of immune sites changes as λ varies from 0 to 1.

The observations from the figure are as follows:

1. When ⟨k⟩ < 1, the spreading remains localized, with only a few sites becoming infected.

2. For 1 < ⟨k⟩ < ln(N), the spreading enlarges, although a significant number of nodes
remain uninfected.

3. When ⟨k⟩ ≥ ln(N), the spreading becomes global, leading to the infection of all nodes.

This behavior mirrors the underlying structure of the network, contingent upon the value of
connectivity, ⟨k⟩.

We further validate the previous findings by examining the density of immune nodes, de-
noted as ⟨ρ⟩, as a function of connectivity, ⟨k⟩, as shown in Fig. 3. In these simulations of the
model, we fix the value of λ to be λ = 1. The figure clearly illustrates the three distinct regions
of spreading.
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Figure 2: Density of immune nodes ⟨ρ⟩ as a function of infection probability λ at various values
of connectivity ⟨k⟩.

4 Phase transition and critical behavior

In this section, our focus is on studying the nonequilibrium phase transition of the SIR model
on random networks. We specifically examine the region where the network becomes connected,
i. e., ⟨k⟩ ≥ ln(N). Our objective is to derive the analytical expression for the critical threshold
of this model on random networks.

4.1 Epidemic Critical Threshold

To derive the epidemic threshold [7], we require some definitions from percolation theory. In a
percolation process on a network, links are systematically removed until only a fraction q of the
N network nodes remain. This process continues until a critical value, known as the percolation
threshold qc, is attained. When q > qc, a spanning cluster comprising a significant fraction of
the N nodes emerges, whereas for q < qc, the network fragments into smaller clusters [9, 11].

Disease spreading can be conceptualized as a growing percolation process [12], wherein,
starting from a given seed, links are progressively added to the expanding network with a
certain probability q. The critical infection rate at which the disease spreads throughout the
network corresponds to the percolation threshold at which a spanning cluster emerges. To
establish this analogy, we need to define the epidemic equivalent of q, which represents the
probability of a node infecting its neighbour. This probability differs from λ, as an infected
node i can transmit the infection to its neighbour j only while it remains infected for a duration
of τI time steps. Hence, the desired probability is given by [13, 14, 15]:

q = 1− (1− λ)τI (4)

The critical infection rate λc for a given τI can then be obtained by substituting the value of
qc in Eq. (4).

To obtain qc, we define ⟨ni⟩, the average number of susceptible nodes infected by an already
infected node i. If ⟨ni⟩ > 1, the disease will keep on spreading until a nonzero fraction of the
network is covered [16]. To show this behavior for the SIR model on random networks, in Fig.
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Figure 3: Density of immune nodes ⟨ρ⟩ as a function of connectivity ⟨k⟩ when λ = 1.

4, we plot the density of immune nodes ⟨ρ⟩ as a function of infection probability λ. Simulation
in this figure is done using a lattice of size N = 103 and p = 0.01 averaged over 1000 realization.
It is clear from the figure the value of ⟨ρ⟩ depends on the value of λ. For small values of λ
the number of infected nodes is approximately zero, however as the value of λ becomes greater
than λ > 0.1 the density of immune nodes ⟨ρ⟩ increases. Using Fig. 4, we can estimate the
critical point to be λc = 0.1 in this case (see Inset of Fig. 4). We can confirm this value of the
critical point analytically. Whereas the average number of numbers of any node on the network
will be ⟨k⟩ = pN = 10. Therefore, the average number of susceptible nodes ⟨ni⟩ infected by
an already infected node i will be ⟨ni⟩ = λ ⟨k⟩. Using the condition ⟨ni⟩ > 1. Then λc = 0.1
which coincides exactly with the numerical value.
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Figure 4: Density of immune nodes ⟨ρ⟩ as a function of λ, for N = 103 and p = 0.01.

In general we are going here to find the analytical expression for the critical threshold of
this model on random networks [7]. The probability of a node reached by following a link to
have degree k (comprising one incoming link and k − 1 outgoing links) is kP (k)/ ⟨k⟩, where
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P (k) represents the degree distribution of the network nodes. Therefore, under the assumption
of a treelike structure with negligible loops [18], the average number of neighbours infected by
node i can be expressed as [16]:

⟨ni⟩ = q
∑
k

kP (k)

⟨k⟩
(k − 1) = q(κ− 1) (5)

where κ− 1 ≡ [⟨k2⟩ / ⟨k⟩]− 1 is the branching factor. At the epidemic threshold, qc(κ− 1) = 1.
So the critical threshold in this is

qc =
1

κ− 1
(6)

Substituting the value of qc from Eq. (6) into Eq. (4), we obtain the following equation for
the critical threshold λc:

λc = 1− (
κ− 2

κ− 1
)1/τI (7)

For the case when τI = 1, the previous equation simplifies to:

λc =
1

κ− 1
(8)

To assess the accuracy of the previous equation, we will utilize Eq. (8) to determine the
critical points of this model on random networks and compare them with the critical points
obtained through Monte Carlo simulations. In the simulations, we will extract the critical
points like what was done in Fig. 4. It’s worth noting that while the method used here
provides critical points, the most accurate method for determining them is the one employed
in Ref. [17]. However, the method used here yields critical points albeit with slightly less
accuracy.

Table 1: Critical points for the SIR model on a random network.
⟨k⟩ λc simulation results λc from Eq. (8).
7.0 0.156(4) 0.1667
10.0 0.105(3) 0.1111
13.0 0.085(3) 0.0833
17.0 0.063(2) 0.0625
21.0 0.051(2) 0.0500
26.0 0.041(2) 0.0400
33.0 0.032(2) 0.0312
41.0 0.024(2) 0.0250
51.0 0.021(1) 0.0200
66.0 0.016(2) 0.0153
101.0 0.010(1) 0.0100

In Table 1, we summarize the estimated values of the critical points obtained from our
Monte Carlo simulations and Eq. (8) for various values of connectivity ⟨k⟩. Fig. 5 illustrates
the comparison between the critical points determined through Monte Carlo simulations and
those obtained using Eq. (8). The figure demonstrates an excellent correspondence between
the simulation results and the analytical relation given by Eq. (8).
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Figure 5: Simulation results of the critical points λc (represented by circles) for N = 103,
alongside the theoretical critical threshold obtained from Eq. (8), are plotted as a function of
connectivity ⟨k⟩.

4.2 Phase transition and critical exponents

The behavior observed in the previous section indicates that the SIR model on random networks
undergoes a phase transition from an absorbing phase to an active phase at the critical point
λc. To determine the nature of this phase transition, we numerically calculate the values
of some critical exponents of this system. It is known that absorbing phase transitions are
characterized by four independent critical exponents β, β́, ν⊥, and ν||. However, the DyP class

exhibits a symmetry known as rapidity reversal symmetry, implying that β = β́ [19]. Thus,
DyP is characterized by only three critical exponents instead of four, with all other exponents
expressible in terms of these. The dynamic exponent z is given by z = ν||/ν⊥. Additionally,

the exponents δ, α, and θ are determined by δ = β́/ν||, α = β/ν||, and θ = d/z − 2δ, where d
denotes the system’s dimension [19].

It is established that for continuous phase transitions, the stationary value of the order
parameter ⟨ρ⟩ diminishes asymptotically as the control parameter λ approaches a critical value
λc, following a power law, characterized by:

⟨ρ⟩ ≈ (λ− λc)
β (9)

The exponent β can be determined by plotting the value of ⟨ρ⟩ as a function of (λ− λc) on a
logarithmic scale (refer to Fig. 6). The power law behavior becomes evident, and the best-fit
value of the critical exponent is found to be β = 1.0 ± 0.0001, which remarkably matches the
theoretical value of β = 1.0 reported in [20] for the mean field of the DyP universality class.
This compatibility with the DyP mean field leads us to conjecture that the SIR model on
random networks belongs to the mean field of the dynamical percolation universality class.

4.3 Time-dependent simulation

To ascertain the universality class of this model, we delve into further critical exponents in this
section. Discerning the nature of phase transitions is somewhat an ’asymptotic’ endeavour,
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Figure 6: Stationary density of immune sites ⟨ρ⟩ as a function of the distance to the critical
point on a double logarithmic scale, when ⟨k⟩ = 10. The linear result accurately fits to the
numerically obtained data with the exponent β = 1.0± 0.001.

where we make conjectures about the asymptotic behaviour of thermodynamic systems by
systematically simulating systems of finite size for finite durations. Fortunately, some insights
into the transition’s nature can be gleaned from time-dependent dynamics, as elucidated in Ref.
[17]. In this approach, we initiate simulations from a configuration close to the absorbing state,
which, in our case, entails commencing simulations from a single active site at the centre of the
lattice. We monitor the time evolution of the system, which begins very near the absorbing
state configuration. We numerically track the survival probability P (t) (the likelihood that
the system doesn’t reach the absorbing state until time t) and the average number of active
sites N(t). At the critical point, these quantities are expected to exhibit asymptotic power
laws (refer to Ref. [17] and the references therein). To ascertain the critical exponents more
precisely, we employ the local slope method, introducing the effective exponent as defined in
Ref. [17]).

In the simulation of the SIR model here, we utilize a lattice of size N = 105 and average
over 2000 initial conditions, with m = 4 fixed. In Figs. 7, we depict the value of the effective
exponent θ as a function of 1/t, with the top plot showcasing results when ⟨k⟩ = 13, and the
bottom plot presenting results for ⟨k⟩ = 23. It is evident that for λ ̸= λc, the values tend
towards zero or diverge to infinity, while they converge to a constant value precisely at λ = λc.
The estimated value of θ = 0.0 ± 0.001 demonstrates excellent agreement with the exponents
for the DyP mean field within the error bars.

Fig. 8 depict the value of the effective exponent δ as a function of 1/t, with the top plot
representing results when ⟨k⟩ = 13, and the bottom plot showcasing results for ⟨k⟩ = 23.
Similarly to the previous case, it is evident that for λ ̸= λc, the values tend towards zero or
diverge to infinity, while they converge to a constant value precisely at λ = λc. The estimated
value of δ = 1.001 ± 0.002 also demonstrates excellent agreement with the exponents for the
DyP mean field within the error bars.

In Table 2, we summarize the results of critical points obtained in this study and compare
them with the exact values of critical exponents for the DyP mean field. The three critical
exponents we have calculated, namely β, θ, and δ, affirm that the nonequilibrium phase tran-
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Figure 7: Time dependent behavior of the effective exponent θ as a function of 1/t, left: when
⟨k⟩ = 13 and right: when ⟨k⟩ = 23.

sition of the SIR model on random networks belongs to the mean field of the DyP universality
class.

Table 2: Critical exponents for the SIR model on a random network.

β θ δ

Exact value [20] 1.0 0.0 1.0
This work 1.00±0.001 0.0±0.001 1.00±0.002
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